Journal of Organometallic Chemistry, 91 (1975) C37–C38 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

A NEW HETERONUCLEAR CLUSTER COMPOUND: $[P(C_6H_5)_3]_2Pt_2Co_2(CO)_8$. SYNTHESIS AND CRYSTAL STRUCTURE

J. FISCHER, A. MITSCHLER and R. WEISS*

Institut de Chimie, Laboratoire de Cristallochimie associé au C.N R.S. (ERA 08), Université Louis Pasteur, B.P. 296/R8, 67008 Strasbourg Cédex (France)

J. DEHAND^{*} and J.F. NENNIG

Institut de Chimie, Laboratoire de Chimie de Coordination associé au C.N R.S. (LA 134), Université Louis Pasteur, B.P. 296/R8, 67008 Strasbourg Cédex (France)

(Received February 26th, 1975)

Summary

The synthesis, spectroscopic features and crystal structure of a new heteronuclear cluster compound $[P(C_6H_5)_3]_2Pt_2Co_2(CO)_8$ of butterfly type are reported.

Although butterfly type homonuclear M_4 [1] and heteronuclear $M_1M'_3$ [2] cluster compounds are known (M and M' represent different metals), few tetrametallic heteronuclear $M_2M'_2$ compounds have been prepared [3]. For one of these the crystal structure has been determined by X-ray diffraction [4].

 $[P(C_6H_5)_3]_2Pt_2Co_2(CO)_8$ (I) was obtained by reaction of $Co(CO)_4^-$ with cis- or trans-PtCl_2 $[P(C_6H_5)_3]_2$ in THF. It was isolated free from several byproducts $(Co_2(CO)_7P(C_6H_5)_3$ and $Co_2(CO)_6 \{P(C_6H_5)_3\}_2$) by chromatography. Recrystallisation of I in a benzene-pentane mixture leads to well-formed dark red crystals (decomposition temperature, 250 °C). The infrared spectra show $\nu(CO)$ bands at 2058s, 2031s, 2009s, 1990s, 1983s, 1891m, 1841s and 1804 vs cm⁻¹ (KBr pellets). Analysis and molecular weight measurements are consistent with a tetrametallic heteronuclear Pt_2Co_2 cluster.

Crystal data: crystals of I are triclinic, space group P1, a = 10.954(4), b = 11.090(4), c = 9.352(4) Å, $\alpha 98.40(2)^{\circ}$, $\beta 11.06(3)^{\circ}$, $\gamma 82.17(2)^{\circ}$, Z = 1.4421 independent reflexions, collected with monochromated Mo- K_{α} radiation on a Picker automatic diffractometer, were used to solve the crystal structure by standard Patterson, Fourier and least-squares methods. The present R value is 0.046.

The crystal structure consists of discrete molecules of I. A representation of the molecule with the atom numbering scheme is shown in Fig. 1 (phenyl groups are indicated only by their C bonded to P). Distances within the cluster containing the tetrahedral metal atoms are: Co(1)-Co(2) = 2.498(3), Co(1)-Pt(1) =

Fig. 1. Numbering scheme of the molecule $[P(C_6H_5)_1]_2Pt_2Co_2(CO)_8$ (1)

2.540(2), Co(2)—Pt(1) = 2.579(2), Co(1)—Pt(2) = 2.554(3), Co(2)—Pt(2) = 2.528(3) and Pt(1)—Pt(2) = 2.987(4) Å. Ligands are distributed among metal centers in the following way: one P(C₆H₅)₃ ligand is associated with each platinum atom and carbonyl group bridges Co(1)—Co(2), Pt(1)—Co(1) and Pt(1)--Co(2). The remaining carbonyl groups are attached terminally to Co(1), Co(2) and Pt(2). The cluster, excluding the phenyl rings, has a pseudomirror plane through Pt(1), Pt(2) and the middle of the Co(1)--Co(2) vector.

Since the Pt(1)—Pt(2) distance is greater by 0.4 Å than twice the covalent radius of platinum (1.30 Å [5]), the cluster has a butterfly configuration which is related to the tetrahedral $(\pi - C_5 H_5)_2 Rh_2 Fe_2(CO)_8$ [4] by flattening of the Pt₂Co₂ tetrahedron along its c₂ axis through the middle of the Co(1)—Co(2) vector.

The Pt(1)—C1(CO)—Co(1) and Co(1)—C5(CO)—Co(2) bridges are symmetric within a three-fold limit of the standard deviations but Pt(1)—C2(CO) and Co(2)—C2(CO) distances differ by 0.2 Å. This asymmetry is due essentially to steric hindrance by the C2(CO)/O(2) group. The platinum and cobalt atoms have 16 and 18 electron configurations respectively. The geometry of the P(C₆H₅)₃ groups is normal.

References

- 1 R.G. Vranka and L.F. Dahl, J. Amer Chem. Soc., 91 (1969) 1574;
- L.F. Dahl and D.L. Smith, ibid., 84 (1962) 2450;
- R. Mason and K.M. Thomas, J. Organometal. Chem., 43 (1972) C39;
- R. Belford, H.P. Taylor and P. Woodward, J. Chem. Soc. (Dalton), (1972) 2425.
- 2 C.W. Bradford, W. Van Bronswijk, R.J.H. Clark and R.S. Nyholm, J. Chem. Soc. (A), (1970) 2889.
- 3 A.T.T. Hsuch and M.J. Mays, J. Organometal. Chem., 39 (1972) 157.
- 4 M.R. Churchill and M.V. Veidis, Chem. Commun., (1970) 529.
- 5 O. Kahn and M.F. Koenig, Données Fondamentales pour la Chimie, Herman, Paris, 1972, p. 21.